Parylene Coating Blog by Diamond-MT

Conformal Coating Suppliers

Posted by Sean Horn on Fri, Aug 25, 2017 @ 08:00 AM

In the highly competitive conformal coatings’ industry, these providers stand out:

Read More

Tags: acrylic conformal coating, conformal coating, conformal coating suppliers

How to Remove Conformal Coatings

Posted by Sean Horn on Fri, Aug 18, 2017 @ 07:30 AM

Appropriately selected and applied, conformal coatings provide essential working protection for printed circuit boards (PCBs). However, removal of conformal coatings is necessary if the wrong coating material is selected relative to the PCB’s functional requirements, inadequately supporting its operating environment. Poor coating application can trigger failure mechanisms within the assembly, also calling for its removal and re-application.

Read More

Tags: acrylic conformal coating, parylene conformal coating, silicone conformal coating, urethane conformal coating, conformal coating removal, conformal coating removal services

3 Key Properties of Acrylic Conformal Coating

Posted by Sean Horn on Fri, Aug 04, 2017 @ 07:39 AM

Conformal coatings made of acrylic resin (AR) are very popular, because of their distinctive beneficial properties. They protect printed circuit boards (PCBs) and similar electronics from corrosion, dirt, dust, fungus, moisture, and thermal shocks. Exceptionally user-friendly, liquid AR can be simply applied by brush, dip, or manual/robotic spray, generally resulting in the fastest turnaround-time of all conformal coatings. Ease of application and rework generates low cost for both manufacturer and client. AR’s moisture protection is also very highly rated, adding to its utility for a wide range of coating uses.

Read More

Tags: acrylic conformal coating, conformal coating, conformal coating properties

Conformal Coating for PCB's

Posted by Sean Horn on Fri, Jul 21, 2017 @ 07:47 AM

Printed circuit boards (PCBs) electrically connect and power all but the simplest electronic products.  To function as designed, PCBs and their components – capacitors, resistors, etc. – require protection against operating problems caused by corrosive liquids, dust, physical shock, temperature extremes and, in the case of medical implants, bodily fluids.  Conformal coatings are applied over PCBs to safeguard mechanisms and maintain functionality.  

Read More

Tags: acrylic conformal coating, parylene conformal coating, silicone conformal coating, conformal coatings, urethane conformal coating

Which Conformal Coating Is Right for Me?

Posted by Sean Horn on Fri, May 19, 2017 @ 07:30 AM

          The value of polymeric conformal coatings for protecting printed circuit boards (PCBs) from functional retardants like dust, corrosion, moisture, and temperature fluctuations has been well-documented.  Conforming to the physical configurations of the exposed face of the PCB, conformal coating:

Read More

Tags: acrylic conformal coating, parylene, conformal coating, silicone conformal coating, urethane conformal coating

Comparing AR to UR Conformal Coating

Posted by Sean Horn on Fri, May 27, 2016 @ 07:30 AM

Acrylic (AR) and polyurethane (UR) conformal coatings are among the best known and most commonly used conformal coating materials.  As liquid coatings, both can be applied to substrates through a variety of methods:

Read More

Tags: acrylic conformal coating, conformal coating, urethane conformal coating, coating comparison

Benefits of Conformal Coating

Posted by Sean Horn on Fri, Jan 08, 2016 @ 08:07 AM

Electronics manufacturers need devices that withstand heat, cold, rain, snow, vibration, fungus, oxidation, and corrosion through decades of operation.

Read More

Tags: acrylic conformal coating, parylene, conformal coating, silicone conformal coating, urethane conformal coating

How Parylene is Applied Compared to Other Conformal Coatings

Posted by Sean Horn on Fri, Aug 21, 2015 @ 01:45 PM

Overall the generic name parylene describes a distinct collection of polycrystalline and linear organic coating materials with innumerable applications.  The essential basis of today's parylene N, p-xylene, was inadvertently synthesized at England's University of Manchester in 1947The filmy residue resulted after high-temperature heating of compounds of toulene and the xylenes polymerized into para-xylene.  The substance immediately demonstrated an exceptional capacity for generating the fine but resilient surface-covering that characterizes today's range of parylene conformal coatings.  

Read More

Tags: acrylic conformal coating, parylene, parylene deposition

Parylene coating vs conformal coating

Posted by Sean Horn on Fri, Jul 24, 2015 @ 08:17 AM

Conformal Coatings

Read More

Tags: acrylic conformal coating, parylene, conformal coating

Differences between Parylene and Acrylic Conformal Coating

Posted by Sean Horn on Fri, Apr 17, 2015 @ 09:00 AM

Parylene and acrylic conformal coatings represent two extremes of the types of compounds you can use to coat printed circuit boards, sensors, or other devices. While acrylic is popular and inexpensive, parylene offers some of the best performance of any coating compound.

Read More

Tags: acrylic conformal coating, parylene