Parylene Coating Blog by Diamond-MT

Repairing Parylene Delamination

Posted by Sean Horn on Fri, Apr 21, 2017 @ 07:37 AM

Applied as a conformal coating through a unique chemical vapor deposition (CVD) process, parylene provides micron-thin, resilient barrier protection for an exceptional range of electrical assemblies.  In comparison to liquid coatings -- acrylic, epoxy, silicon, urethane -- parylene is the coating-of-choice for protecting printed circuits boards (PCBs) and medical devices.  It’s films negate the impact of gravity and surface tension during the coating process; . 

Read More

Tags: parylene, parylene adhesion, parylene disadvantages, parylene delamination, parylene issues

Batch Size Considerations for Parylene Production

Posted by Sean Horn on Fri, Apr 14, 2017 @ 07:35 AM

The parylenes consist of a range of para-xylylene polymers whose desirable physical and electrical properties support expansive utilization as conformal coatings for electronic and medical devices  Parylene films are applied to substrates via a chemical vapor deposition (CVD) process, which deposits monomeric parylene vapor homogeneously and deeply into the surface of printed circuit boards (PCBs) and related assemblies/components. 

Read More

Tags: parylene, parylene process, parylene deposition, parylene disadvantages

Cost of Parylene Dimer

Posted by Sean Horn on Fri, Apr 07, 2017 @ 07:32 AM

Perhaps the most reliable of the conformal coatings, parylene (para-xylylene di-iodide) is also one of the more expensive coating options.  Production costs typically encompass three primary expense categories -- raw materials, labor, and lot volume.  Of the three, labor expenses are generally the most costly, but raw materials can add significantly to production overhead; materials’ costs can be largely attributed to the raw parylene dimer required to make conformal coatings.   

Read More

Tags: parylene, parylene dimer, parylene C, parylene n, parylene af-4

Parylene Protection of Wearable Devices

Posted by Sean Horn on Fri, Mar 31, 2017 @ 07:26 AM

Wearable devices have become familiar, ever more an integral component of everyday life, with expanded uses for many conventional activities.  Advanced med-tech -- ranging in format from external exercise monitors to implanted cardiac pumps, defibrillators and deep-brain sensors –- represent only a fraction of wearable medical devices currently applied for healthcare and treatment.  Smartphones and watches can be found everywhere; smart fabrics are used with increasing frequency for clothing and textiles.   Wearables reflect the expanding scope of the Internet of Things in most areas of human endeavor. 

          As use of wearables grows, manufacturers try to determine the optimal mix of form, function and technology that will encourage further consumer/ professional application of the devices.  In healthcare, wearables provide a range of status indicators (heart rate, physical activity levels, etc.) that monitor individual’s engagement of healthful (or unhealthy) activities.  In addition to focusing on improving their functional technology, battery life and consumer fashion, the need to safeguard wearables performance is a prominent concern.  All wearable devices are informed by technologies that need conformal protection for and from their functional environments.  Parylene films are the most appropriate choice for protection in just about every case. 

Read More

Tags: parylene, MEMS, IoT, wearables, sensors

Parylene and Arathane 5750:  Low Outgassing Conformal Coatings

Posted by Sean Horn on Fri, Mar 17, 2017 @ 07:35 AM

Outgassing occurs when previously adsorbed or occluded gases or water vapor are released from some material.  With respect to protective conformal coatings, outgassing encompasses the discharge of gases previously confined within a high-frequency printed circuit board (PCB) or similar assembly material, often resulting in functional difficulties. 

Read More

Tags: parylene, NASA conformal coating, NASA-STD 8739.1A, arathane 5750

Types of Parylene

Posted by Sean Horn on Fri, Mar 10, 2017 @ 07:34 AM

          Applied in a gaseous form to component surfaces through a chemical vapor deposition (CVD) process, parylene (Poly-para-xylylene) films protect printed circuit boards (PCBs) and similar electrical assemblies.  Gaseous CVD application supports efficient coating of complex component surfaces characterized by crevices, exposed internal areas, or sharp edges.  Depending on the specific use, parylene conformal coatings can be effective in the range of 0.1 - 76 microns' thickness, far finer than competing coating materials.  Equally as strong, adaptable and versatile parylene protects substrates with

Read More

Tags: parylene, parylene C, parylene n, parylene f, parylene af-4, parylene d

What Solvent Breaks Down Parylene?

Posted by Sean Horn on Fri, Mar 03, 2017 @ 07:21 AM

While parylene provides a reliable, versatile conformal coating, it can require removal.  When circumstances necessitate removal of liquid coatings – acrylic, epoxy, silicone or urethane – a wide range of chemical solvents can be used to detach the film from the underlying substrate.  No single chemical material/process is equally successful for all uses, but solvent processes are employed most frequently because they do the least damage to printed circuit boards (PCBs) and their components.  Such is not the case with parylene. 

Read More

Tags: parylene, conformal coating solvents, solvents, parylene safety

Nano Coating vs Parylene

Posted by Sean Horn on Fri, Feb 24, 2017 @ 08:00 AM

Although its basic component is remarkably small – with 25,400,000 nanometers included in just one inch(!!) -- nanotechnology encompasses a growing, interdisciplinary field with an unlimited future.  Nanowires and nanotubes are used in transistors for printed circuit boards (PCBs) and associated electronic assemblies.  Bio-nanobatteries, capacitators, LCDs, and microprocessors represent just a few nano-applications, which include uses for aerospace, agricultural, automotive, consumer, industrial, medical, military and oceanic products. 

Read More

Tags: parylene, parylene properties, conformal coating, parylene disadvantages, nano coating

Nano Coating and Conformal Coating:  A Functional Comparison

Posted by Sean Horn on Fri, Feb 03, 2017 @ 07:37 AM

The engineering of functional systems at the molecular scale, nanotechnology encompasses management of individual atoms, combined into effective working units, often complex as machines.   Yielding advantages like enhanced chemical reactivity and strength than larger-scale structures, they offer greater control of the light spectrum and weigh significantly less.  Incredibly small, one nanometer is a billionth of a meter (10-9 of a meter) -- one inch equals 25,400,000 nanometers; more illustratively, a sheet of newspaper is 100,000 nanometers thick.  

Read More

Tags: parylene, conformal coating, nano coating

Parylene Masking: Materials and Methods

Posted by Sean Horn on Fri, Jan 06, 2017 @ 07:45 AM

Parylene deposition takes place at the molecular level.  Applied at room temperature through CVD processing, the typical thickness of parylene conformal film is in the microns-range. 

Read More

Tags: parylene, conformal coating masking, parylene masking, masking boots