Parylene Coating Blog by Diamond-MT

Cost of Parylene Dimer

Posted by Sean Horn on Fri, Apr 07, 2017 @ 07:32 AM

Perhaps the most reliable of the conformal coatings, parylene (para-xylylene di-iodide) is also one of the more expensive coating options.  Production costs typically encompass three primary expense categories -- raw materials, labor, and lot volume.  Of the three, labor expenses are generally the most costly, but raw materials can add significantly to production overhead; materials’ costs can be largely attributed to the raw parylene dimer required to make conformal coatings.   

Read More

Tags: parylene, parylene dimer, parylene C, parylene n, parylene af-4

Types of Parylene

Posted by Sean Horn on Fri, Mar 10, 2017 @ 07:34 AM

          Applied in a gaseous form to component surfaces through a chemical vapor deposition (CVD) process, parylene (Poly-para-xylylene) films protect printed circuit boards (PCBs) and similar electrical assemblies.  Gaseous CVD application supports efficient coating of complex component surfaces characterized by crevices, exposed internal areas, or sharp edges.  Depending on the specific use, parylene conformal coatings can be effective in the range of 0.1 - 76 microns' thickness, far finer than competing coating materials.  Equally as strong, adaptable and versatile parylene protects substrates with

Read More

Tags: parylene, parylene C, parylene n, parylene f, parylene af-4, parylene d

Different Types of Parylene

Posted by Sean Horn on Fri, Oct 07, 2016 @ 07:30 AM

Parylene Varietals:  Matching Material to Purpose

A common generic name for Poly-para-xylylene, parylene forms a protective plastic film when applied to substrate surfaces.  Application is achieved through a chemical vapor deposition (CVD) process in a vacuum, as a gas to targeted substrate surfaces.

Read More

Tags: parylene, parylene cost, parylene C, parylene applications, parylene n, parylene f, parylene af-4

Parylene Conformal Coatings and UV Light

Posted by Sean Horn on Fri, Feb 05, 2016 @ 07:54 AM

            Parylene has numerous outdoor applications.  However, a major drawback of most parylene types is limited resistance to direct contact with UV radiation.  Daylight is the most common source of UV light.  Prolonged exposure to its high energy radiation can cause objects extensive surface damage and lead to eventual malfunction of electrical light-generating assemblies within.  

Read More

Tags: parylene, parylene for LEDs, parylene disadvantages, parylene f, parylene af-4