Parylene Coating Blog by Diamond-MT

Is Parylene Safe?

Posted by Sean Horn on Fri, Aug 12, 2016 @ 07:30 AM

Application of parylene’s xylylene monomer employs a chemical vapor deposition (CVD) process implemented under a vacuum.  Unlike wet coating application methods – brushing, dipping, spraying, etc. – parylene CVD is not line-of-sight.  Because the vaporous monomer envelopes all sides of the assembly being coated, appropriate process control allows vacuum deposition of an entirely conformal coating, one that penetrates deep into any crevices, rivulets, or sharp edges and points that exist on the assembly’s surface.  The resultant parylene film is insulating, ultra-thin, and pinhole-free, exhibiting superior protective barrier qualities and very low moisture permeability.

Read More

Tags: parylene, parylene deposition, parylene uniformity, medical parylene, medical device coating, parylene safety

Mastering the Parylene Coating Process

Posted by Sean Horn on Fri, Sep 04, 2015 @ 08:00 AM

Parylene Deposition  

Read More

Tags: parylene, parylene process, parylene deposition

How Parylene is Applied Compared to Other Conformal Coatings

Posted by Sean Horn on Fri, Aug 21, 2015 @ 01:45 PM

Overall the generic name parylene describes a distinct collection of polycrystalline and linear organic coating materials with innumerable applications.  The essential basis of today's parylene N, p-xylene, was inadvertently synthesized at England's University of Manchester in 1947The filmy residue resulted after high-temperature heating of compounds of toulene and the xylenes polymerized into para-xylene.  The substance immediately demonstrated an exceptional capacity for generating the fine but resilient surface-covering that characterizes today's range of parylene conformal coatings.  

Read More

Tags: acrylic conformal coating, parylene, parylene deposition

Silicone Conformal Coating vs Parylene

Posted by Sean Horn on Fri, Aug 07, 2015 @ 09:46 AM

Silicone and Parylene conformal coatings are a lot like humans and dogs. At first glance, we are very different from our canine friends. However, we have a lot in common -- noses, two eyes, hearts, dreams. In fact, we share 84 percent of our DNA with Rover (or Spot). So too with the two coatings. While both have some functional differences -- which we'll explore here -- they also have an important similarity. Parylene and Silicone are both some of the best choices for conformal coatings of your company's products.

Read More

Tags: parylene, parylene deposition, silicone conformal coating

Understanding Parylene Deposition

Posted by Sean Horn on Fri, Jul 31, 2015 @ 08:10 AM

Parylene's deposition process is unique among conformal coatings. Unlike others that start as a liquid, get deposited and dry, it starts as a solid. Parylene coating equipment turns it into a vapor, where it then deposits onto the substrate. This unique four-step method poses some challenges but also brings real advantages.

Read More

Tags: parylene, parylene deposition, parylene disadvantages

Masking for Parylene Deposition

Posted by Sean Horn on Fri, Jul 17, 2015 @ 07:15 AM

Masking and Parylene Deposition

Read More

Tags: parylene, parylene deposition, parylene masking

Parylene Masking Revealed

Posted by Sean Horn on Wed, Aug 14, 2013 @ 09:07 AM

Whether the application is a medical device, a printed circuit board (PCB), or a light-emitting diode (LED), a parylene conformal coating is typically applied to protect the product. Sometimes, however, the product actually has to be protected from the parylene conformal coating—or at least parts of it do. 

Read More

Tags: parylene, parylene conformal coating, parylene process, parylene deposition, parylene masking

What is the maximum object size for parylene coating?

Posted by Sean Horn on Mon, Feb 11, 2013 @ 11:00 AM

People often wonder if their project can be parylene coated.  While there are huge list of items that can be coated with parylene, there are some limitations.  One of these limitations is size.

Read More

Tags: parylene, parylene conformal coating, parylene coating process, parylene deposition

What is type XY conformal coating?

Posted by Sean Horn on Wed, Jan 09, 2013 @ 12:04 PM

Type xy conformal coating refers to parylene conformal coating.  Parylene gets the type xy from its’ full name, para-xylylene.   It was shortened to parylene and eventually type xy so that it could be grouped with the other conformal coatings (type ar, ur, etc.).

Read More

Tags: parylene, parylene conformal coating, parylene deposition, conformal coating thickness, type xy

Parylene and MEMS Technology

Posted by Sean Horn on Mon, Jun 18, 2012 @ 07:52 AM

In the past decade, the use of Parylene as a structural material in microelectromechanical systems (MEMS) devices has attracted significant attention.  Parylene C, known for its biocompatibility, is widely used in implantable medical devices.  Parylene C is also compatible with MEMS microfabrication processes.

WHAT ARE MEMS?

Microelectromechanical systems (MEMS) is the technology of very small devices; it merges at the nano-scale into nanoelectromechanical systems (NEMS) and nanotechnology.  MEMS are made up of components between 1 to 100 micrometres in size (i.e. 0.001 to 0.1 mm), and MEMS devices generally range in size from 20 micrometres (20 millionths of a metre) to a millimetre (i.e. 0.02 to 1.0 mm). They usually consist of a central unit that processes data (the microprocessor) and several components that interact with the outside such as microsensors.

Read More

Tags: parylene, parylene conformal coating, parylene deposition, conformal coating thickness, parylene thickness, parylene C, Parylene and MEMS, MEMS