Parylene Coating Blog by Diamond-MT

Parylene Barrier Properties

Posted by Sean Horn on Fri, Jun 01, 2018 @ 07:30 AM

Permeation barriers for electronic devices are essential to assure their ongoing performance through a wide range of operational environments.  Polymer flexible conformal coatings provide good barrier protection, protecting device substrates from unwanted incursion by solid contaminants, chemicals, gaseous permeation and liquid water or vaporous forms of moisture.  Permeability reduction improves with enhanced coating adhesion, minimizing the surface’s  

Read More

Tags: parylene, parylene properties, conformal coating properties

Parylene Coating:  Does Thicker or Thinner Coating Provide Better Performance?

Posted by Sean Horn on Fri, May 25, 2018 @ 07:30 AM

          Parylene (XY) conformal coatings are known and recommended because of their many beneficial performance characteristics.  They provide uniform, pinhole-free protective films with excellent barrier/dielectric/insulative properties, able to conform to virtually any substrate configuration.  One property in particular – micron-thin coating layers – distinguishes XY from liquid coating materials such as acrylic (AR), epoxy (ER), silicone (SR) and urethane (UR), which need to be applied at least twice as thick in most cases and frequently more, limiting their range of uses.  Parylene typically is applied at 0.1 to 50 microns (0.004 -2 mils), while the thicknesses of liquid coatings generally range from 25 to 250 microns (1-10 mils).  Compared to liquid processes, gravity and surface tension generate negligible impact with parylene, eliminating film bridging, pinholes, puddling, run-off, sagging or thin-out during application.  XY’s coefficient of friction coefficient can be as low as 0.25 to 0.30.

Read More

Tags: parylene properties, conformal coating thickness, parylene thickness, conformal coating properties

Conformal Coatings Thickness:  Comparing Parylene with Liquid Coatings

Posted by Sean Horn on Fri, May 18, 2018 @ 07:30 AM

          Of the five most commonly used conformal coatings, four – acrylic (AR), epoxy (ER), silicone (SR) and urethane (UR) – are classified as wet materials, meaning they are applied to substrates by three basic types of liquid-based technology:

Read More

Tags: parylene properties, conformal coating thickness, parylene thickness, conformal coating properties

Optical Clarity of Parylene at Increased Thickness

Posted by Sean Horn on Fri, May 11, 2018 @ 07:30 AM

Generally applied at micron-thin coating layers, parylene (XY) offers numerous barrier, dielectric, insulative and similar protective benefits to printed circuit boards (PCBs) and related electronic assemblies.  One property of parylene applied in its normal range of 0.013 – 0.051 mm. (0.0005 to 0.002 in.) is exceptional optical clarity, which makes it suitable for coating lenses and other devices requiring visual transparency, like photosensitive components. 

Read More

Parylene Effectiveness at Different Thicknesses

Posted by Sean Horn on Fri, May 04, 2018 @ 07:30 AM

          Each conformal coating material exhibits a range of unique performance properties that determine its product uses.  Relevant factors include the required coating-thickness necessary to assure reliable performance.  Like other coating types, parylene (XY) layer thickness is largely a function of several factors:  (1) substrate material, (2) the kind of assembly being covered, and (3) its operational purpose.  Chemically inert parylene is effective at far-thinner application thickness than liquid-applied materials for coating printed circuit boards (PCBs) and related electro assemblies: 

Read More

Tags: parylene properties, conformal coating thickness, parylene thickness, conformal coating properties

Does Parylene Get Everywhere?

Posted by Sean Horn on Fri, Apr 27, 2018 @ 07:30 AM

After pertinent research you’ve determined parylene (XY) is the best conformal film for your coating assignment.  Especially relevant were XY’s uniform protective and insulative properties, which are useful for numerous applications, ranging from printed-circuit boards (PCBs) to medical implants to military-grade purposes.  Among parylene’s other advantages are: 

Read More

Tags: parylene properties, conformal coating inspection, parylene inpsection

Does Parylene De-Wet?

Posted by Sean Horn on Fri, Apr 20, 2018 @ 07:30 AM

Liquid conformal polymers – resins of acrylic (AR), epoxy (ER), silicone (SR) and urethane (UR) – use wet application processes to attach to substrates.  Most prominent of these are brushing the wet coating onto an assembly, dipping (immersing) the assembly in a bath of liquid coating, or spraying the conformal film onto the designated surface.  The coating materials are wet when they are applied.  If

Read More

Tags: parylene properties, conformal coating properties, parylene inpsection

Inspecting Parylene Coating

Posted by Sean Horn on Fri, Apr 13, 2018 @ 07:30 AM

Parylene conformal coating (XY) provides insulative protection for complex electronic circuit assemblies expected to function through rigorous operating conditions -- potential chemical, electrical, moisture and vapor incursion during performance.   Applied through chemical vapor deposition (CVD), parylene penetrates deep within substrate surfaces, generating a level of assembly security surpassing that offered by liquid coatings such as acrylic, epoxy, silicone and urethane.  Yet, although XY is applied in a vacuum, it’s capacity to provide these extraordinary qualities does not exist in one.  Parylene’s durable protective value depends on film adhesion, a quality subject to persistent, thorough inspection throughout the production process.

Read More

Tags: parylene coating process, parylene process, parylene inpsection

Are Parylene Noodles a Defect?

Posted by Sean Horn on Fri, Apr 06, 2018 @ 07:30 AM

Unlike liquid conformal coatings joined to substrate surfaces by wet application methods, polymeric parylene (XY) uses a unique chemical vapor deposition (CVD) process to assure adherence.  There is no intermediate liquid phase.  Rather, cross-link polymerization of powdered raw XY-dimer converts the solid to a vapor at the molecular level, polymerizing XY directly as a transparent film on assembly surfaces.

Read More

Tags: parylene properties, conformal coating defects, parylene inpsection

Best Conformal Coating for Moisture and Chemical Protection

Posted by Sean Horn on Fri, Mar 30, 2018 @ 07:35 AM

Polymeric conformal coatings safeguard printed circuit boards (PCBs) from performance malfunction caused by contact with elements within their operational environment.  Included are:

Read More