Available in five basic material types, conformal coatings can be readily adapted as protective, insulating films for electronics. However, there can be some confusion about which type is best-suited for a specific use. Clearly defining the performance parameters for the component[s] to-be-coated helps coordinate the conformal film material with a unit’s functional requirements. Accurate assessment of environmental conditions like anticipated levels of corrosion, contact with foreign particulates, expected concentrations of moisture/salt spray, temperature fluctuations and vibrational range determine which coating type is best-suited to your electronics’ applications. Without appropriate protection, printed circuit boards (PCBs) and similar electronics will not survive harsh environments, and malfunction.
Read MoreParylene Coating Blog by Diamond-MT
Tags: acrylic conformal coating, parylene, silicone conformal coating, urethane conformal coating, rugged electronics, electronics, epoxy conformal coating, ruggedization, conformal coating selection, electronic conformal coatings
Tags: acrylic conformal coating, parylene conformal coating, conformal coating, silicone conformal coating, urethane conformal coating, epoxy conformal coating
Using Conformal Coating to Prevent Reverse Engineering
Posted by Sean Horn on Tue, Aug 07, 2012 @ 12:54 PM
Conformal Coatings are used regularly in an attempt to cover technology designs on printed circuit boards (PCBs). Normally, this is done by using a pigmented (coloured) conformal coating which obscures the components below the conformal coating material.
Tags: conformal coating, conformal coatings, urethane conformal coating, conformal coating removal, Nexus3C, epoxy conformal coating, reverse engineering
Solvent exposure
In applications that have an exposure to solvents, acrylic conformal coating is not the best choice. Acrylic conformal coating can be removed with a weaker solvent such as isopropyl alcohol or xylene. Whenever it faces even stronger solvents, it will not offer the protection that is needed, especially if your product is a mission critical device. Other coatings, such as urethane or parylene conformal coating have a far better resistance to solvents than acrylics.
Tags: acrylic conformal coating, parylene conformal coating, conformal coating, silicone conformal coating, conformal coatings, HumiSeal 1B31, urethane conformal coating, HumiSeal, epoxy conformal coating
WHAT IS CONFORMAL COATING
Conformal coating is a protective non conductive dielectric layer that is applied to protect the assembly from damage due to contamination, salt spray, moisture, fungus, dust and corrosion caused by harsh or extreme environments.
ARE THERE DIFFERENT TYPES OF CONFORMAL COATING?
There are 5 different mediums for conformal coating:
- Parylene
- Acrylic Resin
- Urethane Resin
- Epoxy Resin
- Urethane Resin
WHAT ARE THE BENEFITS OF EACH TYPE OF CONFORMAL COATING?
- Parylene (Type XY)
- Acrylic Resin (Type AR)
- Epoxy (Type ER)
- Polyurethane (Type UR)
- Silicone (Type SR)
Tags: acrylic conformal coating, parylene conformal coating, conformal coating, silicone conformal coating, urethane conformal coating, epoxy conformal coating