Parylene Coating Blog by Diamond-MT

Is Parylene Hydrophobic?

Posted by Sean Horn on Fri, Aug 10, 2018 @ 07:30 AM

Hydrophobic Basics and Hydrophilicity

Read More

Tags: parylene, parylene properties

Does Parylene Prevent Abrasion Damage?

Posted by Sean Horn on Fri, Jul 06, 2018 @ 07:30 AM

 Unlike liquid coatings – acrylic, epoxy, silicone and urethane – parylene (XY) does not use wet method application.  It can neither be brushed or sprayed onto substrate surfaces, nor will immersion – soaking the substrate in a bath of coating material – work.  In addition, XY’s:

Read More

Tags: parylene, parylene properties, parylene inpsection

Top 5 Myths of Parylene

Posted by Sean Horn on Fri, Jun 08, 2018 @ 07:30 AM

Although parylene (XY) is a well-recognized and often used conformal coating, misconceptions about what it is and can do are common.  These mistaken beliefs interfere with true understanding of parylene’s uses.  Five of the most consistent misconceptions – and appropriate corrective information – should clear things up.

Read More

Tags: parylene, parylene properties, parylene disadvantages

Parylene Barrier Properties

Posted by Sean Horn on Fri, Jun 01, 2018 @ 07:30 AM

Permeation barriers for electronic devices are essential to assure their ongoing performance through a wide range of operational environments.  Polymer flexible conformal coatings provide good barrier protection, protecting device substrates from unwanted incursion by solid contaminants, chemicals, gaseous permeation and liquid water or vaporous forms of moisture.  Permeability reduction improves with enhanced coating adhesion, minimizing the surface’s  

Read More

Tags: parylene, parylene properties, conformal coating properties

What can be Coated: Conformal Coatings and Parylene Compared

Posted by Sean Horn on Fri, Mar 23, 2018 @ 08:02 AM

Conformal coatings are used to protect printed circuit boards (PCBs) from dust, humidity/moisture, mildew/mold, temperature extremes, and other elements whose prolonged contact might interfere with assembly function. Coatings also enhance electrical clearance-tolerance, while safeguarding PCB components from contamination (particulate or otherwise), corrosive materials, and mechanical stress.

Read More

Tags: parylene, conformal coatings, conformal coating applications

Review and Summary of Michael Osterman’s “Effectiveness of Conformal Coat to Prevent Corrosion of Terminals”

Posted by Sean Horn on Fri, Feb 23, 2018 @ 07:28 AM

Originally published in the IPC Proceedings, the article “Effectiveness of Conformal Coat to Prevent Corrosion of Terminals“ was published online by circuit insight (http://www.circuitinsight.com/programs/54223.html). Author Michael Osterman is affiliated with the Center for Advanced Life Cycle Engineering, University of Maryland (College Park, MD).

Read More

Tags: parylene

Different Coatings for Electronics

Posted by Sean Horn on Fri, Jan 26, 2018 @ 07:18 AM

The value of polymeric conformal coatings for protecting printed circuit boards (PCBs) from functional retardants like dust, corrosion, moisture, and temperature fluctuations is well-known. What may be less known is, that as the electrical components used in PCBs become smaller, traditional conformal films are commensurately less effective for certain coating purposes. With the rise of microelectricalmechanical systems (MEMS) and nano technology, nanocoats are increasing in prominence, in many cases surpassing even micro-thin parylene not-liquid coatings in utility for MEMS/nano applications.

Read More

Tags: parylene, nano coating

Ruggedization and Conformal Coating

Posted by Sean Horn on Fri, Jan 05, 2018 @ 07:35 AM

Conformal coatings are non-conductive dielectric film-coverings applied over printed circuit boards (PCBs) to protect them from damage caused by chemical incursion, corrosion, current-leakage, dirt/dust, extreme temperatures, fungus, moisture, rain, salt-spray, wind and persistent, intensive vibrations both within and external to the device. These failure mechanisms can soon lead to PCB malfunction and eventual breakdown. Rugged coatings’ exceptional performance durability and versatility protect delicate, finely-tuned components.

Read More

Tags: acrylic conformal coating, parylene, parylene conformal coating, rugged electronics, ruggedization

Automotive Conformal Coatings

Posted by Sean Horn on Fri, Dec 15, 2017 @ 08:00 AM

Long used to safeguard printed circuit boards (PCBs) and other essential automotive electronics from harsh operating environments, conformal coatings’ importance in auto-design/manufacture has never been greater. Fragile electronic components and the paths between them require protection for PCBs to perform reliably. Conforming to PCBs’ topographies, coatings insulate assembly components, safeguarding specialized electronics’ functional integrity through extreme operating conditions.

Read More

Tags: parylene, silicone conformal coating, Automotive conformal coatings

Paralene, Paralyne, or Parylene: Correctly Spelling and Using This Superior Conformal Coating

Posted by Sean Horn on Fri, Dec 01, 2017 @ 08:01 AM

Accidentally discovered in 1947, by chemist Michael Szwarc, the polymer parylene originally bore his name, and was known for a brief period known as Szwarcite. Working to thermally decompose the solvent p-xylene at temperatures exceeding 1000 °C, Szwarc identified the monomer para-xylylene di-iodide as the only product resulting when para-xylylene was reacted with iodine.

Read More

Tags: parylene, parylene process, parylene deposition, parylene C