Parylene Coating Blog by Diamond-MT

5 Key Properties of Parylene

Posted by Sean Horn on Tue, Jan 07, 2014 @ 09:42 AM

Since its discovery in the 1940s, Parylene has skyrocketed to prominence as an ideal conformal coating choice for a range of applications. Given its unique blend of properties, it might seem like an unparalleled conformal coating option. In many ways, it is. Here are five key properties of Parylene that differentiate it from the rest.

Read More

Tags: parylene, parylene properties, parylene C

Parylene and MEMS Technology

Posted by Sean Horn on Mon, Jun 18, 2012 @ 07:52 AM

In the past decade, the use of Parylene as a structural material in microelectromechanical systems (MEMS) devices has attracted significant attention.  Parylene C, known for its biocompatibility, is widely used in implantable medical devices.  Parylene C is also compatible with MEMS microfabrication processes.

WHAT ARE MEMS?

Microelectromechanical systems (MEMS) is the technology of very small devices; it merges at the nano-scale into nanoelectromechanical systems (NEMS) and nanotechnology.  MEMS are made up of components between 1 to 100 micrometres in size (i.e. 0.001 to 0.1 mm), and MEMS devices generally range in size from 20 micrometres (20 millionths of a metre) to a millimetre (i.e. 0.02 to 1.0 mm). They usually consist of a central unit that processes data (the microprocessor) and several components that interact with the outside such as microsensors.

Read More

Tags: parylene, parylene conformal coating, parylene deposition, conformal coating thickness, parylene thickness, parylene C, Parylene and MEMS, MEMS

Parylene for use in Bio-Medical implantable devices

Posted by Sean Horn on Tue, Jun 12, 2012 @ 10:52 AM

Whenever implantable devices come into contact with the human body, long term protection against body fluids, enzymes, proteins, and lipids is vital.  Bio-medical surfaces typically require coating to protect from moisture, chemicals, and other potentially harmful substances.

 A downfall for wet chemistry, liquid coatings such as silicones, acrylics, epoxy, or urethanes is that they do not meet bio-compatibility requirements and cannot be applied with precise control.  On the contrary, parylene does not out-gas and is very effective against the passage of contaminants from both the body to substrate or substrate to body.

Read More

Tags: parylene, parylene conformal coating, Medical conformal coatings, parylene C, implantable devices, medical parylene, medical parylene uses, medical devices, bio-medical