Applied as a conformal coating through a unique chemical vapor deposition (CVD) process, parylene provides micron-thin, resilient barrier protection for an exceptional range of electrical assemblies. In comparison to liquid coatings -- acrylic, epoxy, silicon, urethane -- parylene is the coating-of-choice for protecting printed circuits boards (PCBs) and medical devices. It’s films negate the impact of gravity and surface tension during the coating process; .
Read MoreParylene Coating Blog by Diamond-MT
Tags: parylene, parylene adhesion, parylene disadvantages, parylene delamination, parylene issues
Despite parylene’s numerous benefits as a conformal coating, it has several disadvantages that should be recognized before it is used. Failure mechanisms that can emerge from parylene coatings have limited its wider scale application in comparison to liquid conformal films such as acrylic, epoxy, silicon, and urethane. In many situations, wet coatings can provide better performance and lower cost (or both) for many applications.
Read MoreTags: parylene, parylene properties, parylene removal, parylene disadvantages, parylene issues
Tags: parylene, parylene adhesion, parylene disadvantages, medical device coating, parylene delamination, parylene issues
In addition to cracking, a range of associated issues may interfere with successful coating of parylene films. Because it is applied via CVD, parylene generates a structurally continuous film covering a PCB or similar assembly. In CVD, the interaction of vapor-phase chemical reactants formulate a non-volatile solid film on a substrate, useful for a variety of applications like corrosion resistance, erosion defense, and high temperature protection.
Read MoreTags: parylene, parylene process, parylene rework, parylene disadvantages, parylene issues
Delamination Problems of Parylene Conformal Coatings
Providing a uniform and pinhole-free substrate coating that is ultra-thin, lightweight and durable, parylene coatings completely conform to targeted components and assemblies. Parylene CVD generates a structurally continuous film that, with appropriate pre-treatment, penetrates deep within substrate surfaces, rather than simply attaching themselves to substrates as liquid-application coatings do. These provide effective, dielectrically efficient safeguards with coatings as thin as a fraction of a micrometer. Parylene is chemically and biologically inert and stable, an excellent barrier material to abrasive chemicals, bodily fluids, solvents, liquid water and water vapor.
Read MoreTags: parylene, parylene adhesion, parylene delamination, parylene issues