Parylene Coating Blog by Diamond-MT

What Happens to Parylene when the Dielectric Voltage is Exceeded?

Posted by Sean Horn on Fri, Apr 24, 2020 @ 08:00 AM

Poly(para-xylylene) derivatives (parylenes) are used as conformal coatings in a wide range of applications in the automotive, medical, electronics, military and semiconductor industries. They are inert, transparent and have excellent barrier properties as dielectric thin films. Because their deposition takes placeunder vacuum sub-micron range crevices can be coated leading to excellent barrier properties (void free) and they have extraordinary purity that is of great importance in electronic applications. Not all parylene derivatives show same dielectric properties (Table 1). It is also important to note that dielectric properties of parylenes depend on their thickness thus their %crystallinity which is explained below.

Read More

Tags: parylene conformal coating, parylene process, parylene properties

5 Keys to Parylene Process

Posted by Sean Horn on Fri, Apr 10, 2020 @ 08:00 AM

Parylene Process:

Read More

Tags: parylene, parylene coating process, parylene process, parylene inpsection

Why does the parylene process take so long?

Posted by Sean Horn on Fri, Mar 06, 2020 @ 01:38 PM

Parylene is a transparent polymer that offers uniform and pinhole-free conformal coatings for printed circuit boards, medical devices, and microelectronics. Varieties of parylene are made available through a modification of the molecular structure of para-xylylene (Parylene N, C, D, and F-AF4, and F-VT4). Each modification results in a set of material properties that are applicable in different service conditions.

Read More

Tags: parylene, parylene coating process, parylene process

What do I need for a Parylene Coating Quote?

Posted by Sean Horn on Fri, Sep 21, 2018 @ 07:30 AM

          Parylene’s (XY) reputation as the most versatile and reliable of major conformal coating materials is well-earned.  However, unlike liquid coatings –resins of acrylic, epoxy, silicone and urethane – parylene cannot be applied via relatively economical brush, dip or spray methods.  XY can be the most expensive of the major conformal coatings to use, a factor influenced both by:

Read More

Tags: parylene process, conformal coating service, parylene coating service

Can Parylene be used as a Standalone Enclosure?

Posted by Sean Horn on Fri, Sep 14, 2018 @ 07:30 AM

Parylene (XY) polymer conformal films are recognized for their exceptional range of desirable functional properties for coating printed circuit boards (PCBs) and similar electronics.  Beneficial properties include biocompatibility, chemical/solvent resistance, dielectric/insulative reliability, and ultra-thin pinhole-free film thicknesses between 1-50 μm.  They also generate complete surface conformability, regardless of substrate configuration, exceeding the coating capabilities of liquid conformal materials, such as acrylic, epoxy, silicone and urethane.   

Read More

Tags: parylene process, parylene properties

Elongation Properties of Parylene

Posted by Sean Horn on Fri, Sep 07, 2018 @ 03:04 PM

For conformal coatings, elongation is a measure of material ductility -- a specific coating's ability to undergo significant plastic deformation before rupture.  A coating’s yield elongation is the maximum stress the material will sustain before fracture.  Thus, computed parylene (XY) elongation measurements represent the total quantity of strain the conformal film can withstand before failure.  While elongation is equal to a material’s operating failure strain, it has no exclusive units of measurements.  Typically,

Read More

Tags: parylene coating process, parylene process, parylene properties

What Temperature is Parylene Applied At?

Posted by Sean Horn on Fri, Aug 03, 2018 @ 07:30 AM

Parylene (XY) conformal coatings are applied to substrate materials through a specialized chemical vapor deposition (CVD) process that completely eliminates the liquid phase of wet coatings.  No initiators or catalysts are involved in CVD polymerization, which synthesizes truly conformal protective film in-process.  This is in stark contrast to wet coating materials such as acrylic, epoxy, silicone and urethane, which are synthesized prior to application via, brush, dip or spray methods.  Wet during application, liquid-coated substrates requiring further drying and curing.

Read More

Tags: parylene coating process, parylene process, parylene deposition

Can I Glue to Parylene?

Posted by Sean Horn on Fri, Jul 27, 2018 @ 07:30 AM

With reliable moisture barrier properties, parylene (XY) conformal coatings generally have a hydrophobic surface when deposited onto substrates, causing liquids to form separate droplets on film surfaces.  While this outcome is useful for many XY applications, greater hydrophilic response, wherein XY molecules form ionic or hydrogen bonds with water molecules, can also be desired.  This can be achieved by applying glue or epoxy on top the deposited parylene; surfaces acquire enhanced hydrophilic properties, becoming more wettable. 

Read More

Tags: parylene process, parylene properties, parylene rework

In-Line Parylene Processing??

Posted by Sean Horn on Fri, Jun 29, 2018 @ 07:30 AM

The phrase “in-line parylene processing" is deceptive  because it does not accurately describe the method in which parylene (XY) is applied as a conformal coating.  It is true that some aspects of the traditional production line are relevant, but primarily in a fractional way. without the traditional station-to-station regimentation of standard in-line manufacturing processes.

Read More

Tags: parylene process, parylene applications, parylene inpsection

Inspecting Parylene Coating

Posted by Sean Horn on Fri, Apr 13, 2018 @ 07:30 AM

Parylene conformal coating (XY) provides insulative protection for complex electronic circuit assemblies expected to function through rigorous operating conditions -- potential chemical, electrical, moisture and vapor incursion during performance.   Applied through chemical vapor deposition (CVD), parylene penetrates deep within substrate surfaces, generating a level of assembly security surpassing that offered by liquid coatings such as acrylic, epoxy, silicone and urethane.  Yet, although XY is applied in a vacuum, it’s capacity to provide these extraordinary qualities does not exist in one.  Parylene’s durable protective value depends on film adhesion, a quality subject to persistent, thorough inspection throughout the production process.

Read More

Tags: parylene coating process, parylene process, parylene inpsection