Parylene Coating Blog by Diamond-MT

Does Parylene Make my Product Waterproof?

Posted by Sean Horn on Fri, Aug 24, 2018 @ 07:30 AM

Protecting printed circuit boards (PCBs) and similar electronics from the incursion of water is an essential responsibility of parylene (XY) conformal coating.  Suitable XY permeation barriers assure no form of liquid passes through to underlying components and that the water vapor transmission rate (WVTR) is minimal.  WVTR measures the level of water vapor migration through the applied barrier film, in terms of area and time.  Optimal WTVR ratings are represented by lower numerical values.  In comparison to liquid coatings, parylene typically provides lowest-level values, indicating better moisture barrier provision.  

Acrylic, epoxy, silicone and urethane coatings can be more quickly affected by water, its vapor, and other sources of moisture, such as: 

  • acid rain,
  • mists of other airborne pollutants,
  • salt-air and
  • chaotic weather.
Read More

Tags: parylene, parylene properties, parylene uniformity

Nonconformity of Parylene on Wafers

Posted by Sean Horn on Fri, Jun 22, 2018 @ 07:30 AM

          The polymer parylene (XY) provides exemplary, ultra-thin conformal coating for printed circuit boards (PCBs), solar cells, light emitting diodes (LEDs), medical implants, aeronautical/military equipment and numerous other products, with uniform, insulative protection in the nanometer (nm.) range

Read More

Tags: MEMS, Parylene and MEMS, parylene uniformity

Is Parylene Safe?

Posted by Sean Horn on Fri, Aug 12, 2016 @ 07:30 AM

Application of parylene’s xylylene monomer employs a chemical vapor deposition (CVD) process implemented under a vacuum.  Unlike wet coating application methods – brushing, dipping, spraying, etc. – parylene CVD is not line-of-sight.  Because the vaporous monomer envelopes all sides of the assembly being coated, appropriate process control allows vacuum deposition of an entirely conformal coating, one that penetrates deep into any crevices, rivulets, or sharp edges and points that exist on the assembly’s surface.  The resultant parylene film is insulating, ultra-thin, and pinhole-free, exhibiting superior protective barrier qualities and very low moisture permeability.

Read More

Tags: parylene, parylene deposition, medical parylene, medical device coating, parylene safety, parylene uniformity

How Long Does the Parylene Coating Process Take?

Posted by Sean Horn on Fri, Nov 20, 2015 @ 07:39 AM

Parylene Chemistry and Production Requirements

Read More

Tags: parylene, parylene coating process, parylene uniformity

What is the uniformity of parylene conformal coating?

Posted by Sean Horn on Fri, Sep 14, 2012 @ 10:33 AM

Parylene  is often applied to substrates or materials where there is no room for any voids in the protective coating.  These materials are likely to be placed in harmful chemicals, a moisture packed environment, or even the human body.  These are often mission critical devices which can not allow any environmental factors to alter their performance.  Whenever these devices need this stringent level of protection from the elements, parylene is the only logical choice. 
Read More

Tags: parylene, conformal coating, conformal coatings, conformal coating issues, parylene uniformity