Parylene Coating Blog by Diamond-MT

Effects of Adhesion Promotion on Sensors

Posted by Sean Horn on Fri, Oct 26, 2018 @ 07:30 AM

Sensors measure specific aspects of data-driven technology.  Included are such performance properties as acceleration, fluidity, humidity/temperature, position, pressure or vibration.  Sensors collect data  and respond with feedback for a multitude of electronic devices utilizing printed circuit boards (PCBs) and related sensitive electronics.  They have been successfully adapted for use across a wide range of applications, including aerospace/military, appliance, automotive, communications, consumer, industrial, medical and transportation uses.  

PCBs and the larger devices they power often need to function in harsh operating environments.  Conformal coatings -- liquid acrylic, epoxy, silicone and urethane resins, and chemical vapor-deposited (CVD) parylene – provide PCBs and similar electronics excellent barrier, dielectric and insulative protection through most performance conditions, sustaining their expected utility.  Substrate adhesion is necessary to conformal film reliability; coatings do not work if they delaminate or otherwise disengage from the components they are applied to protect. 

Read More

Tags: parylene inpsection, parylene adhesion, sensors

Parylene Protection of Wearable Devices

Posted by Sean Horn on Fri, Mar 31, 2017 @ 07:26 AM

Wearable devices have become familiar, ever more an integral component of everyday life, with expanded uses for many conventional activities.  Advanced med-tech -- ranging in format from external exercise monitors to implanted cardiac pumps, defibrillators and deep-brain sensors –- represent only a fraction of wearable medical devices currently applied for healthcare and treatment.  Smartphones and watches can be found everywhere; smart fabrics are used with increasing frequency for clothing and textiles.   Wearables reflect the expanding scope of the Internet of Things in most areas of human endeavor. 

          As use of wearables grows, manufacturers try to determine the optimal mix of form, function and technology that will encourage further consumer/ professional application of the devices.  In healthcare, wearables provide a range of status indicators (heart rate, physical activity levels, etc.) that monitor individual’s engagement of healthful (or unhealthy) activities.  In addition to focusing on improving their functional technology, battery life and consumer fashion, the need to safeguard wearables performance is a prominent concern.  All wearable devices are informed by technologies that need conformal protection for and from their functional environments.  Parylene films are the most appropriate choice for protection in just about every case. 

Read More

Tags: parylene, wearables, sensors, IoT, MEMS