Parylene Coating Blog by Diamond-MT

Conformal Coating Types: Acrylic, Urethane, Silicone, and Parylene

Posted by Sean Horn on Fri, Feb 02, 2018 @ 07:33 AM

Used for aerospace. automotive, commercial, defense, industrial and medical applications, conformal coatings are applied in film layers generally 30-130 microns (micrometers/μm) thick, or 0.0012-0.0051 inches (“). Conformal films’ exceptional thinness is their greatest asset. Coatings safeguard printed circuit boards (PCBs) and similar electronics from performance malfunction generated by unwanted contact with:

Read More

Tags: conformal coating types, acrylic conformal coating, urethane conformal coating, silicone conformal coating, parylene conformal coating

Automotive Conformal Coatings

Posted by Sean Horn on Fri, Dec 15, 2017 @ 08:00 AM

Long used to safeguard printed circuit boards (PCBs) and other essential automotive electronics from harsh operating environments, conformal coatings’ importance in auto-design/manufacture has never been greater. Fragile electronic components and the paths between them require protection for PCBs to perform reliably. Conforming to PCBs’ topographies, coatings insulate assembly components, safeguarding specialized electronics’ functional integrity through extreme operating conditions.

Read More

Tags: Automotive conformal coatings, parylene, silicone conformal coating

Best Electronics Coatings

Posted by Sean Horn on Fri, Nov 17, 2017 @ 08:01 AM

Available in five basic material types, conformal coatings can be readily adapted as protective, insulating films for electronics. However, there can be some confusion about which type is best-suited for a specific use. Clearly defining the performance parameters for the component[s] to-be-coated helps coordinate the conformal film material with a unit’s functional requirements. Accurate assessment of environmental conditions like anticipated levels of corrosion, contact with foreign particulates, expected concentrations of moisture/salt spray, temperature fluctuations and vibrational range determine which coating type is best-suited to your electronics’ applications. Without appropriate protection, printed circuit boards (PCBs) and similar electronics will not survive harsh environments, and malfunction.

Read More

Tags: electronic conformal coatings, electronics, rugged electronics, ruggedization, acrylic conformal coating, urethane conformal coating, conformal coating selection, parylene, silicone conformal coating, epoxy conformal coating

How to Remove Conformal Coatings

Posted by Sean Horn on Fri, Aug 18, 2017 @ 07:30 AM

Appropriately selected and applied, conformal coatings provide essential working protection for printed circuit boards (PCBs). However, removal of conformal coatings is necessary if the wrong coating material is selected relative to the PCB’s functional requirements, inadequately supporting its operating environment. Poor coating application can trigger failure mechanisms within the assembly, also calling for its removal and re-application.

Read More

Tags: conformal coating removal, conformal coating removal services, acrylic conformal coating, urethane conformal coating, silicone conformal coating, parylene conformal coating

Conformal Coating for PCB's

Posted by Sean Horn on Fri, Jul 21, 2017 @ 07:47 AM

Printed circuit boards (PCBs) electrically connect and power all but the simplest electronic products.  To function as designed, PCBs and their components – capacitors, resistors, etc. – require protection against operating problems caused by corrosive liquids, dust, physical shock, temperature extremes and, in the case of medical implants, bodily fluids.  Conformal coatings are applied over PCBs to safeguard mechanisms and maintain functionality.  

Read More

Tags: conformal coatings, acrylic conformal coating, silicone conformal coating, urethane conformal coating, parylene conformal coating

Which Conformal Coating Is Right for Me?

Posted by Sean Horn on Fri, May 19, 2017 @ 07:30 AM

          The value of polymeric conformal coatings for protecting printed circuit boards (PCBs) from functional retardants like dust, corrosion, moisture, and temperature fluctuations has been well-documented.  Conforming to the physical configurations of the exposed face of the PCB, conformal coating:

Read More

Tags: conformal coating, acrylic conformal coating, urethane conformal coating, parylene, silicone conformal coating

Parylene and Silicone Conformal Coatings:  A Comparison

Posted by Sean Horn on Fri, Jun 24, 2016 @ 07:30 AM

One liquid coating type that rivals the use of parylene is silicone conformal coating (Type SR), which cures rapidly, is reliably dielectric and displays exceptional stability across a wide temperature range.  These properties make it parylene’s chief performance competitor, for many purposes.  Further comparison delineates their benefits and disadvantages relative to each other.

Read More

Tags: parylene, silicone conformal coating, type xy, type sr conformal coating

Benefits of Conformal Coating

Posted by Sean Horn on Fri, Jan 08, 2016 @ 08:07 AM

Electronics manufacturers need devices that withstand heat, cold, rain, snow, vibration, fungus, oxidation, and corrosion through decades of operation.

Read More

Tags: acrylic conformal coating, parylene, conformal coating, silicone conformal coating, urethane conformal coating

Silicone Conformal Coating vs Parylene

Posted by Sean Horn on Fri, Aug 07, 2015 @ 09:46 AM

Silicone and Parylene conformal coatings are a lot like humans and dogs. At first glance, we are very different from our canine friends. However, we have a lot in common -- noses, two eyes, hearts, dreams. In fact, we share 84 percent of our DNA with Rover (or Spot). So too with the two coatings. While both have some functional differences -- which we'll explore here -- they also have an important similarity. Parylene and Silicone are both some of the best choices for conformal coatings of your company's products.

Read More

Tags: parylene, parylene deposition, silicone conformal coating

Best Conformal Coating for Humid Environments

Posted by Sean Horn on Fri, Apr 10, 2015 @ 08:43 AM

Just about every major type of conformal coating provides protection against moisture. If you get a printed circuit board coated with epoxy, acrylic, urethane, silicone or parylene wet, typically all that you have to do is wipe it off. Environments with high humidity pose a different set of challenges. Because moisture is omnipresent in humid environments, the conformal coating doesn't just have to resist water ingress. It also needs to completely seal the coated item. Given this additional requirement, the best choice will usually be either silicone or parylene.

Read More

Tags: parylene, conformal coating, silicone conformal coating