Parylene Coating Blog by Diamond-MT

How Long Will Parylene Coating Last?

Posted by Sean Horn on Fri, May 22, 2020 @ 08:00 AM

The stability and insulation property of Parylene conformal coating is critical for the reliable operation of electronic devices throughout their lifetime (PCBs, MEMS, sensors, implants and so on.). The failure mechanism of the conformal coating layers is known to be due to pore formation, blistering, delamination and thinning or pinhole formation due to dielectric breakage of the coating over time [1], [2]. Therefore, the surface where the interface between the conformal coating and the substrate will be formed is of high importance. The cleanliness of this surface has a great impact on the final results of the conformal coating process and the coatings durability. At Diamond MT we provide professional surface cleaning services ensuring the long lasting results for your components. Also, the parylene conformal coating thickness and parylene varieties required for different service are considerations to take into account. We offer our professional services to direct our customers. Some of the variables of different service conditions can be listed as:

Read More

Tags: parylene conformal coating, parylene coating process, parylene properties

What Happens to Parylene when the Dielectric Voltage is Exceeded?

Posted by Sean Horn on Fri, Apr 24, 2020 @ 08:00 AM

Poly(para-xylylene) derivatives (parylenes) are used as conformal coatings in a wide range of applications in the automotive, medical, electronics, military and semiconductor industries. They are inert, transparent and have excellent barrier properties as dielectric thin films. Because their deposition takes placeunder vacuum sub-micron range crevices can be coated leading to excellent barrier properties (void free) and they have extraordinary purity that is of great importance in electronic applications. Not all parylene derivatives show same dielectric properties (Table 1). It is also important to note that dielectric properties of parylenes depend on their thickness thus their %crystallinity which is explained below.

Read More

Tags: parylene conformal coating, parylene process, parylene properties

Can I Spray Parylene Myself?

Posted by Sean Horn on Fri, Apr 17, 2020 @ 08:00 AM

The answer is “No!”

Read More

Tags: parylene conformal coating, parylene coating process, parylene properties

Parylene for Military Sensors

Posted by Sean Horn on Fri, Jan 17, 2020 @ 08:00 AM

Today, security systems rely on different types of advanced, intelligent and connected sensor technologies. Application areas are diverse: radar systems, vision, night vision (IR-cameras), acceleration- orientation-location detection (accelerometers, gyroscopes, GPS), chemicals (neural toxins, other toxic gasses, liquids, materials), wearable sensors (body temperature, relative humidity, location detection), barometric (under water), air flow (aerospace, missiles) and they are brought together for multifunctionality on PCB’s which carry many sensor at a time. Sensors used in military applications pose stringent requirements such as robustness under severe environmental conditions and require longevity of sensing functions. Some of the environmental conditions that are harsh on sensors can be listed as:

Read More

Tags: parylene, parylene conformal coating, parylene properties, military electronics, parylene for aerospace

Comparison of Parylene C, N, and F :  Similarities, differences and their application areas

Posted by Sean Horn on Fri, Jan 10, 2020 @ 08:00 AM

At Diamond MT, we offer parylene coatings of different polymeric varieties (N, C, and F) as listed in the following Table. The basic parylene molecule is the Parylene N (poly-para-xylylene) monomer. Modification of the Parylene N monomer by a functional group such as Chlorine and Fluorine leads to Parylene C (poly(2-chloro-para-xylylene)) and Parylene F, respectively. The derivatization of new varieties can be done by the addition of functional groups to Paryelene N main-chain phenyl ring and its alip

Read More

Tags: parylene, parylene properties, parylene C, parylene n, parylene f

Parylene’s Optical Properties and Performance

Posted by Sean Horn on Fri, Sep 06, 2019 @ 08:00 AM

The polymer parylene (XY) is a reliable protective conformal film that safeguards the visual clarity and color of printed circuit boards (PCBs), similar electronic assemblies and other products.  XY optical clarity seldom diminishes to the extent either the coating or the underlying substrate becomes visually indistinct, although over-exposure to ultraviolet (UV) light may eventually interfere with optical perception.  However, in the majority of cases, colorless parylene generates advantageous optical properties for a wide range of uses -- including artwork/museum artifacts, cameras/sensors, computer touchscreens, healthcare/medical devices, light-emitting diode systems (LEDs), and optoelectronic components maintaining consistent aerospace, scientific, and telecommunication operations.

Read More

Tags: parylene, parylene properties, optical performance

Corrosion Protection with Parylene

Posted by Sean Horn on Fri, Aug 23, 2019 @ 08:00 AM

A natural process, corrosion enacts chemical/electrochemical reactions that degrade and gradually destroy materials or components within a functional environment.  The outcome can be dangerous and costly to repair.  

Read More

Tags: parylene, parylene coating process, parylene properties

Dielectrical Performance and Strength of Parylene

Posted by Sean Horn on Fri, Aug 16, 2019 @ 08:00 AM

A primary function of all conformal coatings is maintaining sufficient insulation and avoiding dielectric breakdown while protecting printed circuit boards (PCBs) and related electronic assemblies. Providing a completely homogeneous coating surface, parylene (XY) conformal coatings are exceptionally corrosion-resistant, dense and pinhole-free. Among other performance advantages, ultra-thin XY protective films offer superior dielectric properties. Dielectric substances maintain electrical insulation, simultaneously transmitting electricity without conduction. They have the potential to store energy because they support electrostatic fields that release only low levels of thermal energy.

Read More

Tags: parylene, parylene properties, dielectric strength

Moisture Protection of Parylene

Posted by Sean Horn on Fri, Dec 28, 2018 @ 07:30 AM

Conformal coatings primary purpose is protecting the performance of highly sophisticated electronics such as printed circuit boards (PCBs), sustaining their functionality through often unfriendly operating conditions.  Among the most important coating-requirement is safeguarding PCBs from the negative impact of moisture incursion.  Sources are many.  Liquidized obstacles to appropriate assembly function can result from unwanted contact with acid rain, aggressive solvents, atmosphere pollutants, chemicals, fog, high humidity, intermittent immersion, persistent rain, snow, salt water/mist and wet sprays of any kind. 

Read More

Tags: parylene, parylene properties, parylene thickness

Dry Film Lubricity of Parylene

Posted by Sean Horn on Fri, Dec 21, 2018 @ 07:30 AM

Chemically inert parylene (Poly-para-xylylene/XY) conformal film is often selected because its micron-thin protective films generate precise coating uniformity, regardless of substrate topography.  To this extent, XY far exceeds the capacities of liquid materials – resins of acrylic, epoxy, silicone or urethane – for a wide range of coating assignments.  It is true that pre-synthesized liquid coatings are easier to apply.  However, their conformal films are dimensionally thicker, making them difficult to position in constricted operating spaces.  Liquids are also generally less resistant to contaminant incursion and other problems that interfere with reliable performance of printed circuit boards (PCBs), and most other contemporary electronics, including biomedical implants.

Read More

Tags: parylene, parylene properties, lubricious coatings